If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-22x-4=0
a = 7; b = -22; c = -4;
Δ = b2-4ac
Δ = -222-4·7·(-4)
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{149}}{2*7}=\frac{22-2\sqrt{149}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{149}}{2*7}=\frac{22+2\sqrt{149}}{14} $
| -19+9w=-3w+5 | | 2f+16+7f=-10+7f | | n-13/4+n+4/5=7/10 | | 5(3n-1)+8=3(5n+3) | | 2(10x-8)+136=180 | | 37/84x=37 | | (3y-1)/2=7 | | x2+9x-112=0 | | 6.2=(7−x)/0.2 | | (9+u)(2u+5)=0 | | -288=-6(6+6n) | | -5x-2=4-3x | | 7x=18x-35 | | 8.230x10^4=82300 | | -17s=20-18s | | 2(x+10)+3x=35 | | 9m=4m-30 | | 7x=18x | | 8-10p=-6-11p | | y=1-15 | | x2/9=1/3 | | .=y12.88 | | 7=5x-1 | | 9w+5=-3w-19 | | -5u=-4u+10 | | 63z=49+15z2 | | -6+11x=11x-6 | | 450=40x | | 4y+22y+10=0 | | a×1-5=-8 | | F(t)=-16t^2+104t | | x=3.4=9.1 |